16 research outputs found

    BeppoSAX observations of the X-ray pulsar MAXI J1409-619 in low state: discovery of cyclotron resonance features

    Full text link
    The transient 500 s X-ray pulsar MAXI J1409-619 was discovered by the slit cameras aboard MAXI on October 17, 2010, and soon after accurately localized by Swift. We found that the source position was serendipitously observed in 2000 during BeppoSAX observations of the Galactic plane. Two sources are clearly detected in the MECS: one is consistent with the position of IGR J14043-6148 and the other one with that of MAXI J1409-619. We report on the analysis of this archival BeppoSAX/MECS observation integrated with newly analyzed observation from ASCA and a set of high-energy observations obtained from the offset fields of the BeppoSAX/PDS instrument. For the ON-source observation, the 1.8-100 keV spectrum is fit by an absorbed power law with a photon index Gamma = 0.87_{-0.19}^{+0.29}, corresponding to 2-10 and 15-100 keV unabsorbed fluxes of 2.7E-12 and 4E-11 erg/cm2/s, respectively, and a 2-10 keV luminosity of 7E+34 erg/s for a 15 kpc distance. For a PDS offset field observation, performed about one year later and showing a 15-100 keV flux of 7E-11 erg/cm2/s, we clearly pinpoint three spectral absorption features at 44, 73, and 128 keV, resolved both in the spectral fit and in the Crab ratio. We interpret these not harmonically spaced features as due to cyclotron resonances. The fundamental energy of 44 +/- 3 keV corresponds to a magnetic field strength at the neutron star surface of 3.8E12 (1+z) G, where z is the gravitational redshift. We discuss the nature of the source in the light of its possible counterpart.Comment: 10 pages, 9 figures. Expanded and revised version accepted for publication in ApJ Main Journa

    INTEGRAL high energy sky: The keV to MeV cosmic sources

    Full text link
    After almost 5 years of operation, ESA's International Gamma-Ray Astrophysics Laboratory (INTEGRAL) Space Observatory has unveiled a new soft Gamma ray sky and produced a remarkable harvest of results, ranging from identification of new high energy sources, to the discovery of dozens of variable sources to the mapping of the Aluminum emission from the Galaxy Plane to the presence of electrons and positrons generating the annihilation line in the Galaxy central radian. INTEGRAL is continuing the deep observations of the Galactic Plane and of the whole sky in the soft Gamma ray range. The new IBIS gamma ray catalogue contains more than 420 sources detected above 20 keV. We present a view of the INTEGRAL high energy sky with particular regard to sources emitting at high energy, including Active Galactic Nuclei (AGN), HESS/MAGIC counterparts and new view of the cosmic gamma ray diffuse background.Comment: Nucl. Instr. and Meth. A, in press. Proc. of Roma International Conference on Astroparticle Physics (RICAP'07

    VizieR Online Data Catalog: 8yr INTEGRAL/IBIS soft gamma-ray source obs. (Bird+, 2016)

    Get PDF
    Here we report an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good-quality data available, from the launch in 2002, up to the end of 2010. This corresponds to ~110Ms of scientific public observations, with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5σ significance threshold detected in the 17-100keV energy band, of which 120 sources represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and these are both reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. A comparison is made with previous IBIS catalogs and catalogs from other similar missions. (2 data files)

    Spectral variation in the supergiant fast X-ray transient SAX J1818.6-1703 observed by XMM-Newton and INTEGRAL

    Get PDF
    We present the results of a 30 ks XMM-Newton observation of the supergiant fast X-ray transient (SFXT) SAX J1818.6-1703 - the first in-depth soft X-ray study of this source around periastron. INTEGRAL observations shortly before and after the XMM-Newton observation show the source to be in an atypically active state. Over the course of the XMM-Newton observation, the source shows a dynamic range of ∼100 with a luminosity greater than 1 × 1035 erg s-1 for the majority of the observation. After an ∼6 ks period of low-luminosity (∼1034 erg s-1) emission, SAX J1818.6-1703 enters a phase of fast flaring activity, with flares ∼250 s long, separated by ∼2 ks. The source then enters a larger flare event of higher luminosity and ∼8 ks duration. Spectral analysis revealed evidence for a significant change in spectral shape during the observation with a photon index varying from Γ ∼ 2.5 during the initial low-luminosity emission phase, to Γ ∼ 1.9 through the fast flaring activity, and a significant change to Γ ∼ 0.3 during the main flare. The intrinsic absorbing column density throughout the observation (nH ∼ 5 × 1023 cm-2) is among the highest measured from an SFXT, and together with the XMM-Newton and INTEGRAL luminosities, consistent with the neutron star encountering an unusually dense wind environment around periastron. Although other mechanisms cannot be ruled out, we note that the onset of the brighter flares occurs at 3 × 1035erg s-1, a luminosity consistent with the threshold for the switch from a radiative-dominated to Compton cooling regime in the quasi-spherical settling accretion model

    Advances in Understanding High-Mass X-ray Binaries with INTEGRAL and Future Directions

    Get PDF
    High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies. In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum. These comprise the interaction of stellar winds with the high gravitational and magnetic fields of compact objects, the behaviour of matter under extreme magnetic and gravity conditions, and the perturbation of the massive star evolutionary processes by presence in a binary system. We highlight the role of the INTEGRAL mission in the discovery of many of the most interesting objects in the high mass X-ray binary class and its contribution in reviving the interest for these sources over the past two decades. We show how the INTEGRAL discoveries have not only contributed to significantly increase the number of high mass X-ray binaries known, thus advancing our understanding of the population as a whole, but also have opened new windows of investigation that stimulated the multi-wavelength approach nowadays common in most astrophysical research fields. We conclude the review by providing an overview of future facilities being planned from the X-ray to the very high energy domain that will hopefully help us in finding an answer to the many questions left open after more than 18 years of INTEGRAL scientific observations.The INTEGRALteams in the participating countries acknowledge the continuous support from their space agencies and funding organizations: the Italian Space Agency ASI (via different agreements including the latest one, 2019-35HH, and the ASIINAF agreement 2017-14-H.0), the French Centre national d’études spatiales (CNES), the Russian Foundation for Basic Research (KP, 19-02-00790), the Russian Science Foundation (ST, VD, AL; 19-12-00423), the Spanish State Research Agency (via different grants including ESP2017-85691-P, ESP2017-87676-C5-1-R and Unidad de Excelencia María de Maeztu – CAB MDM-2017-0737). IN is partially supported by the Spanish Government under grant PGC2018-093741-B-C21/C22 (MICIU/AEI/FEDER, UE). LD acknowledges grant 50 OG 1902

    Advances in Understanding High-Mass X-ray Binaries with INTEGRALand Future Directions

    Get PDF
    High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical community since the dawn of X-ray Astronomy. In more recent years, they have challenged our comprehension of physical processes in many more energy bands, ranging from the infrared to very high energies.In this review, we provide a broad but concise summary of the physical processes dominating the emission from high mass X-ray binaries across virtually the whole electromagnetic spectrum. These comprise the interaction of stellar winds with the high gravitational and magnetic fields of compact objects, the behaviour of matter under extreme magnetic and gravity conditions, and the perturbation of the massive star evolutionary processes by presence in a binary system.We highlight the role of the INTEGRAL mission in the discovery of many of the most interesting objects in the high mass X-ray binary class and its contribution in reviving the interest for these sources over the past two decades. We show how the INTEGRAL discoveries have not only contributed to significantly increase the number of high mass X-ray binaries known, thus advancing our understanding of the population as a whole, but also have opened new windows of investigation that stimulated the multi-wavelength approach nowadays common in most astrophysical research fields.We conclude the review by providing an overview of future facilities being planned from the X-ray to the very high energy domain that will hopefully help us in finding an answer to the many questions left open after more than 18 years of INTEGRAL scientific observations.</p

    Fast transient sources observed with INTEGRAL

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Chasing candidate Supergiant Fast X-ray Transients in the 1000 orbits INTEGRAL/IBIS catalogue

    Get PDF
    We report results from an investigation at hard X-rays (above 18 keV) and soft X-rays (below 10 keV) of a sample of X-ray transients located on the Galactic plane and detected with the bursticity method, as reported in the latest 1000 orbits INTEGRAL/IBIS catalogue. Our main aim has been to individuate those with X-rays characteristics strongly resembling Supergiant Fast X-ray Transients (SFXTs). As a result, we found four unidentified fast X-ray transients which now can be considered good SFXT candidates. In particular, three transients (IGR J16374-5043, IGR J17375-3022, and IGR J12341-6143) were very poorly studied in the literature before the current work, and our findings largely improved the knowledge of their X-ray characteristics. The other transient (XTE J1829-098) was previously studied in detail only below 10 keV, conversely the current work provides the first detailed study in outburst above 18 keV. In addition we used archival infrared observations of the transients to pinpoint, among the field objects, their best candidate counterpart. We found that their photometric properties are compatible with an early-type spectral classification, further supporting our proposed nature of SFXTs. Infrared spectroscopy is advised to confirm or disprove our interpretation. The reported findings allowed a significant increase of the sample of candidate SFXTs known to date, effectively doubling their number

    INTEGRAL view of TeV sources: a legacy for the CTA Project

    Get PDF
    Investigations that were carried out over the last two decades with novel and more sensitive instrumentation have dramatically improved our knowledge of the more violent physical processes taking place in galactic and extra-galactic Black-Holes, Neutron Stars, Supernova Remnants/Pulsar Wind Nebulae, and other regions of the Universe where relativistic acceleration processes are in place. In particular, simultaneous and/or combined observations with γγ-ray satellites and ground based high-energy telescopes, have clarified the scenario of the mechanisms responsible for high energy photon emission by leptonic and hadronic accelerated particles in the presence of magnetic fields. Specifically, the European Space Agency INTEGRAL soft γγ-ray observatory has detected more than 1000 sources in the soft γγ-ray band, providing accurate positions, light curves and time resolved spectral data for them. Space observations with Fermi-LAT and observations that were carried out from the ground with H.E.S.S., MAGIC, VERITAS, and other telescopes sensitive in the GeV-TeV domain have, at the same time, provided evidence that a substantial fraction of the cosmic sources detected are emitting in the keV to TeV band via Synchrotron-Inverse Compton processes, in particular from stellar galactic BH systems as well as from distant black holes. In this work, employing a spatial cross correlation technique, we compare the INTEGRAL/IBIS and TeV all-sky data in search of secure or likely associations. Although this analysis is based on a subset of the INTEGRAL all-sky observations (1000 orbits), we find that there is a significant correlation: 39 objects (∼20% of the VHE γγ-ray catalogue) show emission in both soft γγ-ray and TeV wavebands. The full INTEGRAL database, now comprising almost 19 years of public data available, will represent an important legacy that will be useful for the Cherenkov Telescope Array (CTA) and other ground based large projects
    corecore